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Abstract: Various wave functions for the ground (1A18) and low-lying excited states of benzene were examined by 
projecting onto them the valence-bond functions corresponding to Kekule, Dewar, and Coulomb-stabilized ionic 
structures. The results show large (75 %) contributions from singly ionic structures, 40-50% Kekule structure for 
the ground state, and 30-40 % covalent character to the 1B2U state. The molecular wave functions are also examined 
for benzene distorted to a "cyclohexatriene" structure, particularly to determine the relative contributions of the two 
(now nonequivalent) Kekule structures. The more favored or short double-bond structure increases its contribu­
tion about 25 %, and the less favored structure decreases by about the same fraction. The relative change in Kekule 
contributions and in corresponding pairs of ionic functions are the most significant changes associated with the 
distortion. 

The quest for usefully accurate molecular wave func­
tions has clearly reached a fruitful plateau. Wave 

functions now available for diatomic and small poly­
atomic molecules are sufficiently accurate to permit the 
calculation of a large variety of the ground-state prop­
erties of interest in traditional chemistry. These func­
tions are not only numerically accurate; through the 
medium of contour maps,2 they provide us with clear 
intuitive physical understanding of the variation of 
wave functions from state to state and from molecule 
to molecule. The collection of results, taken together, 
offers a happy rejoinder to the pessimistic reservations 
that were heard during the earliest years of the com­
puter era. 

To add to the information obtainable from orbital 
and total wave-function contours, we felt that we could 
gain further insight into molecular behavior from an­
other type of analysis. This analysis, with origins 
in traditional interpretations of electronic structure, is 
nevertheless still part of the chemist's vocabulary and 
is perhaps a meaningful contributor to his chemical 

(1) (a) Yale University; (b) University of Chicago. 
(2) A. C. Wahl, Science, ISl, 961 (1966); K. Ruedenberg, private 

communication. 

intuition. Specifically, we refer to the determination 
of covalent and ionic character, as represented by 
valence-bond functions. 

The basic idea is this: each valence-bond function 
represents a kind of physical behavior which we "under­
stand" or can use for the interpretation of chemical 
behavior. The true molecular wave function fi or a 
reasonable approximation of it can be represented by 
a sum of contributions from a set of valence-bond (VB) 
functions, or from any complete basis set of functions, 
according to the principal of superposition. If the 
set happens to be a set of VB functions, we conven­
tionally call the phenomenon of superposition "res­
onance." If each function in the basis set is normalized 
to unity, then the coefficient or amplitude of a function 
is a measure of its contribution to the exact or ap­
proximate function Q under consideration; specifi­
cally, the absolute square of the coefficient of the basis 
function ^ j is the fraction of O which is composed of 

We should explain and review just a little more of 
what the approach does and does not imply. First, 
it is very important to recognize that valence-bond 
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wave functions are very highly correlated functions, 
with respect to both space and spin. A valence-bond 
analysis is not a population analysis in the sense that 
molecular orbital functions give population analyses; 
with valence-bond functions one can ask questions like 
"In a triplet state of benzene, what is the probability 
that, if one of the unpaired electrons is one atom 1, we 
will find the other on atom 4, while the remaining -K 
electrons are in 2-3 and 5-6 bonds?" In other words, 
a valence-bond analysis is a very specific sort of analysis 
of electron correlation. 

Second, we must remember that traditional valence-
bond functions are not orthogonal to each other. 
This mathematical relationship between the functions 
has its parallel in physical terms; thus, the physical 
conditions represented by two valence-bond conditions 
are not in general mutually exclusive conditions. A 
covalent bond carries some ionic character in the tra­
ditional valence-bond representation. This nonor-
thogonality and the complexity of physical interpreta­
tion that accompanies it has two sources. One is the 
nonorthogonality of the basic atomic orbitals on differ­
ent atoms; the other, much more bothersome for in­
terpretive purposes, is due to the overcompleteness of 
the set of valence-bond structures. The first problem 
can be eliminated by generating a set of orthogonalized 
atomic orbitals, e.g., equivalent orbitals, and using 
these as basis functions. One necessarily delocalizes 
an orbital on one atom when one orthogonalizes it to 
an orbital on another atom. Consequently this orthog­
onality is obtained at the expense of a little intuitive 
understanding, at least insofar as our understanding of 
valence-bond structures are associated with localized 
orbitals. The other type of nonorthogonality has been 
discussed, for example, in connection with the question 
of resonance in butadiene.3 It comes from the fact 
that one can in general draw more structures for a 
molecule than the number of independent functions, 
just as one can draw more than two vectors on an array 
of point in a plane. Yet just as any vector on the 
array can be represented with any two independent 
(nonparallel) vectors, any of the possible valence-bond 
structures of a molecule can be expressed in terms of 
some small number of independent structures. Thus 
for benzene's TV electrons there are twelve possible 
nonionic singlet VB structures, but only six (any six) 
are independent. And with this overcompleteness 
comes the nonorthogonality problem: although we may 
choose six independent functions, in general these are 
not orthogonal; if we make them orthogonal, only one 
function of the orthogonal set can be chosen to repre­
sent a single valence-bond structure. We are forced 
either to give up orthogonality and to make our indi­
vidual functions easily interpretable, or to make the 
functions orthogonal and therefore mutually exclusive, 
but accept basis functions that do not represent single 
structures. 

The foregoing discussion is of course simply a review 
of some of the ramifications of valence-bond methods 
that have been long recognized in the literature of wave-
function calculations. However, it seemed desirable 
to refresh our memories of some of these ramifications 
because of the possible misinterpretations which might 
arise if they are overlooked. 

(3) R. S. Berry, J. Chem. Phys., 30, 936 (1959). 

We have selected several representative wave func­
tions for the six ir electrons of benzene and projected 
onto these functions a number of suitably symmetrized 
valence-bond (VB) structure functions. The squares 
of these projections are the numbers of interest to us 
here; the square of the projection of a VB structure 
function ^ onto an "accurate" six-electron function 
fi, namely, | (Q j ^ ) j 2 , is the fraction of f2 which is made 
of ^ . An analysis of this kind could have been per­
formed by calculating the molecular wave function 
with a VB basis set, but the projection procedure is far 
more efficient, in view of the availability of rather good 
wave functions. 

We have chosen to examine the w electrons of benzene 
for three reasons. First, we wished to find the relative 
importance of the Kekule (or better, perhaps, Thiele) 
structure and of the ionic structures having the greatest 
Coulomb stabilization. Second, we wanted to learn 
how these contributions to the ground and low-lying 
excited states differed. Third, we were interested in 
the behavior of the electron pairing with molecular 
vibration, and particularly in the relative contributions 
of the two Kekule structures when the bond lengths of 
the ring alternate between the values appropriate to 
"pure" double and single bonds. 

The first reason was prompted by the results of a 
similar analysis of ground-state wave functions of 
butadiene.3 The butadiene functions were naturally 
composed of 70-88% of the normal covalent structure, 
but, surprisingly, contained over 40% of the C + C - C + C -

structure. Such numbers raised questions in our minds 
of the role of multiply ionized structures in benzene. 
Craig4 had actually carried out calculations with a VB 
basis but had restricted his functions to the Kekule, 
Dewar, and singly ionized structures, including ionic 
Dewar structures. In light of the butadiene results, 
we chose to evaluate the projections of a somewhat 
different set, namely, the appropriately symmetrized 
combinations of structures 0-4. We shall refer to a 

O O- O: O O 
0 1 2 3 4 

(Kekule') (Dewar) 

VB function representing a single diagram like those 
of 0-4 as a primitive VB function. A linear combina­
tion of physically equivalent primitive VB functions 
which transforms as an irreducible representation of the 
molecular point group is called a symmetrized VB func­
tion, or for convenience, simply a VB function. 

The second part of this study is a comparison of the 
VB composition of the 1A18 ground state with various 
VB contributions to the lower excited states. We 
have calculated the contributions of structures 0-3 
to the 1B111 and 1B211 states, the states responsible for 
benzene's absorption bands in the 2400- and 2000-A 
regions. We have also examined briefly the corre­
sponding triplets, looking particularly at the roles of 

O: O 
5 6 

(4) D. P. Craig, Proc. Roy. Soc. (London), A200, 401 (1950). 
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Table I. Squares of Projections of VB Functions for Benzene in the 
1Ai8 Ground State in Equilibrium Configuration" 
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VB 
function 

onto III 

"Rc-c = 1.393 A. 

Primitive 
* 0 

0.260 
0.258 
0.437 

Symmetrized 
* 0 

0.395 
0.392 
0.675 

Symmetrized 

0.759 
0.757 
0.759 

Symmetrized 
* 2 

0.641 
0.640 
0.328 

Symmetrized 
* 3 

0.225 
0.223 
0.064 

Primitive 
* 4 

0^346 

structures 5 and 6. Note that 6 is the triplet analog of 
the Dewar structure 4. 

The third part of the analysis was stimulated by the 
recognition that benzene's normal vibration of b2u 
symmetry carried the molecule into a geometry ap­
propriate to a cyclohexatriene structure.6 If the C-C 
bond distances in a hypothetical "cyclohexatriene" 
molecule are 1.465 and 1.335 A,6 then the benzene ring 
spends roughly 15% of its time distorted enough to 
reach or pass the cyclohexatriene geometry. The rather 
obvious next question was this: to what degree do the 
electrons respond to a cyclohexatriene geometry by 
correlating themselves according to a single Kekule 
structure? When the C-C bonds alternate in length 
between 1.465 and 1.335 A, what are relative contri­
butions of the two Kekule structures? 

Description of the Calculations 
Before presenting the results of the analysis, let us 

describe the "accurate" wave functions we used. The 
details of the method of calculation are given in Appen­
dix 1. For the 1A18 ground electronic state of the un-
distorted (D6h) benzene molecule, we used three differ­
ent functions, denoted by the letters a, b, and c: "a" 
is a single configuration, based on atomic self-consistent 
field (SCF) orbitals of carbon;7 "b" is a single con­
figuration, based on Clementi's full molecular SCF 
calculation for all electrons of benzene,8 which is prob­
ably the best available uncorrelated wave function for 
this molecule; and "c" is the 22-term configuration 
interaction function of Moskowitz and Barnett based 
on single Slater function representations of the atomic 
carbon orbitals.9 This function does account for 
electron correlation but suffers from the limitation 
of the single Slater orbital representation. We shall 
refer to these three representations of the ground-state 
function as 1A^a, 1A^b, and 1A18-C, respectively. 
Unfortunately no function is yet available which com­
bines the use of accurate atomic orbitals, as in b, with 
configuration interaction as in c. 

For the excited states we examined the following func­
tions, which we denote simply by the state designation 
and approximation: for the 1B2n state, all three ap­
proximations, 1B21Ta (based on atomic SCF orbitals), 
1B21Tb (based on Clementi's full molecular SCF func­
tion), and 1B2U-C (Moskowitz' 13-term configuration in­
teraction function for this state); and for the 1Bm state, 
and the triplets 3B111 and 3B211, only the configuration in­
teraction functions of Moskowitz, i.e., the functions cor­

es) R. S. Berry, /. Chem. Phys., 35, 2253 (1961). 
(6) C. C. Costain and B. P. Stoicheff, ibid., 30, 777 (1959); H. J. 

Bernstein, Trans. Faraday Soc, 57, 1649 (1961). 
(7) R. Silbey, N. R. Kestner, J. Jortner, and S. A. Rice, J. Chem. Phys., 

42, 444 (1965). The »P SCF AO set was used. 
(8) E. Clementi, private communication. 
(9) J. Moskowitz and M. P. Barnett, J. Chem. Phys., 39, 1557 (1963). 

The eigenvectors were very kindly supplied by Dr. Moskowitz. 

responding to approximation c, which have 16, 13, and 
18 molecular orbital configuration basis functions, re­
spectively. 

For the distorted molecule, whose symmetry is D3n, 
we used the 2pir atomic SCF orbital basis. With 
these, we carried out a variational calculation to deter­
mine a best set of molecular orbitals. Specifically, 
when the molecular symmetry is reduced from D6n 
to D3n, the eg and eu orbitals all become e" orbitals 
(e" and e"*) and can mix, in pairs. We therefore 
replace the lowest configuration with a simple varia­
tional function 

(a2u)2(elg)4' 
D6n 

•(a"!)2(e"cosw + e"*sinw)4 

D3h 

and expand the new function in terms of simple con­
figurations based on e" and e"* functions. To find 
the optimum mixture of the e" and e"* orbitals, we 
need only diagonalize a 2 X 2 one-electron Hamil-
tonian (see Appendix 2). 

Results 
A. Ground State. Table I contains the values of 

squares of projections onto the ground state of func­
tions representing structures 0-4. The primitive Dewar 
structure 4 was done only for the configuration interac­
tion (CI) function 'Aig-c; this is of little concern because 
it was really wanted only for comparison with the 
triplets. We remind the reader that the VB functions 
are highly nonorthogonal, so that the sums of the 
squares of the projections will in general be much 
larger than unity. 

The first two rows of Table I are extremely similar, 
for a very simple reason. The 7r-molecular orbitals of 
D6n benzene are fixed entirely by symmetry, and the 
composition of these orbitals in terms of VB functions 
is thereby determined. The only differences between 
the first row and the second in these two tables arise 
from the differences in the atomic overlap. The cor­
responding values for the single Slater function set with­
out configuration interaction were also generated during 
the computation of the projections onto Moskowitz-
Barnett functions. These are also quite similar to the 
first two rows, but about 10% smaller because of the 
smaller overlaps of the Slater basis set. 

The amount of polar character in the benzene ground 
state is rather striking. Even after configuration inter­
action the 1A18 function retains a large portion of its 
singly ionic structure. The total covalent contribution 
increases considerably with CI, apparently at the ex­
pense of the doubly and especially the triply ionic 
function. We must exercise a little care in attributing 
an increase in one function to a decrease in another, 
both because of the nonorthogonality problem and 
because we have examined only a few structures. From 
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the analogy of the butadiene calculation,3 we may ex­
pect the Slater function calculation of Moskowitz and 
Barnett to underestimate the amount of ionic character 
because of the inherently large estimate of the energy 
required to form a C + C - pair in this basis set. 

B. Excited Singlets. Some of the VB structures are 
naturally excluded by symmetry considerations from 
contributing to particular excited states. For ex­
ample, the two Kekule structures can give only A lg 

and B2u combinations, and so are excluded from the 
B l u ; the triply ionic structure (3) and its counterpart 
can give a sum and difference with A lg and B lu symmetry, 
but no B2U; the Dewar structure (4) cannot contribute 
B2u either. These relations provided useful checks of 
the computational machinery. 

In Table II we see both an analysis of various func­
tions representing the 1B2U, and, in the last line, the CI 
result alone for the 1B111. The physical situations in 
these two states are quite strikingly different; the 
lower energy B2u is almost entirely covalent, while the 
B1U has considerable doubly and triply ionic character. 

Table II. Squares of Projections of VB Functions for Benzene in 
1B2U and 1Bi,, States in Equilibrium Configuration" 

VB 
function 

1B2^a 
1B2U-D 
1B2U-C 
1BiU-C 

Primi­
tive 
*o 

0.149 
0.147 
0.320 
0 

Symme­
trized 

* 0 

0.439 
0.432 
0.907 
0 

Symme­
trized 

* i 

0.844 
0.840 
0.525 
0.562 

Symme­
trized 

* 2 

0.520 
0.512 
0.116 
0.611 

Symme­
trized 

* 3 

0 
0 
0 
0.215 

° Equilibrium, that is, for the ground state, with R = 1.393 A. 

Note that symmetry alone forces the 1B2U function to 
have a large amount of singly and doubly ionic char­
acter, but that CI reduces these considerably. The 
Moskowitz-Barnett single configuration, not shown in 
Table III, gives almost 0.8 for the symmetrized SJZ1, 
so the reduction is not an artifact of the orbital basis set. 

C. Triplet. The triplet result can be described 
very briefly. Symmetry excludes the nonionic struc­
tures 5 and 6 from the next-lowest triplet, the 1B20, but 
not from the lowest triplet, the 3B lu. The primitive 
function representing structure 5 contributes 26% of the 
total function 6B111-C, and the Dewar-like or quinoid 
triplet, 40% of the same function. Recall from Table 
I that the ground state has 35 % of the primitive Dewar 
structure. We interpret this to mean that the lowest 
triplet state may have a little more quinoid character 
than the ground state, but not vastly more. 

D. Distorted Benzene. The results in the first line 
of Table III exhibit an interesting contrast to the first 
two lines of Table I. Note that it is with the second 
lines of Tables I and II, for 1 A ^ b and 1B2^b, that the 

calculations of Table III should be compared, and not 
the third lines. No CI function is available for the 
distorted species, and it was our feeling that our one-
parameter variation of the SCF function would give a 
sufficiently accurate measure of the relative change in 
the contributions of the two Kekule structures. The total 
"symmetrized SIV in column 3 of Table III is based 
on the projection of the sum of the functions in the 
first two columns and is the equivalent of a Thiele 
structure in the same sense as the symmetrized SĴ 0 

of Table I. The value of 0.399 is essentially the same 
as the values of 0.395 for the symmetrized SjV0 function 

1A1^a in Table I. However, the primitive ^ 0 
' 2 

on 
in D6h symmetry gives a value for | (SJVJ 1A1^a)]2 of 
0.260; the two corresponding structures in our D3h 

structure give essentially this average value, but the 
expected change in the relative contributions of these 
functions does actually occur. The contributions of the 
two covalent structures change, one upward and the 
other downward, by roughly 25%. The change is not 
startling, but it is very significant. By contrast to 
the change in the two Kekule functions, the triply 
ionic contribution, SĴ , does not change dramatically 
when the C6 ring is distorted to D3h symmetry. This 
lack of change is particularly evident in the 1B2U ex­
cited state, where triply ionic character is forbidden in 
sixfold symmetry but allowed in D3h. The actual 
amount of triply ionic character in lB2u-a, in the D3h 

form, is only 0.01 %, so that the distortion is a very 
small perturbation so far as "triple-ionization" is 
concerned. 

We shall close with a remark about a limitation of a 
method such as the one used here. The concept of a 
valence-bond structure is meaningful only in terms of a 
specific set of atomic orbitals. As such, it can be 
used to analyze only those wave functions based on a 
single, well-defined set of atomic orbitals. The method 
will not be applicable to configuration interaction 
wave functions based on configurations each of which 
has its own uniquely determined basis set, chosen for 
example to make each configuration satisfy self-con­
sistent field and orthogonality relationships. 
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Appendix. 1. Method of Computing Projections 
The projections were calculated in this way. Let Sir 

represent the set of symmetrized VB spin eigenfunc-

Table III. Squares of Projections of VB Functions onto Distorted" (D3h) Benzene. Ground and First-Excited Singlet States 

VB 
function6 

'Symmetrized 

(Thiele) 
1A, 
1 A i 

r 

Ic 

' from 
B2* 

0.337 
0.155 

0. 
0. 

204 
138 

0.399 
0.438 

0. 
0. 

573 
329 

0. 
0. 

342 
386 

0.481 
0.135 

0.351 
0.206 

0.220 
0.0001 

" Alternating lengths of 1.335 and 1.464 A. b All functions taken symmetrized to transform as Ai' in D3h. 
text. d Based on orbital parameters found in fixing ground-state function. 

Determined as described in 
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Table IV. Sets of Atomic Overlap Integrals 
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p 2| 
|5 jjl 

Sn Sn Su 

a(a tomicSCF) 0.32155 0.07992 0.04625 
b (Clementi) 0.31009 0.05796 0.02674 
c (Moskowitz) 0.24850 0.03519 0.01571 

tions and U represent the "accurate" wave functions, 
all of which are expressed in terms of orthonormal 
molecular orbitals yp. Then we write the transforma­
tion expressing ^ in terms of fi's as a series of matrix 
transformations 

* = VDS-1C^ (1) 

where C is the configuration interaction matrix (the 
identity, except for the Moskowitz set fic); S - 1 is the 
unitary matrix which is the inverse of the matrix generat­
ing spin eigenfunctions from single MO determinants; 
D is the matrix transforming single MO determinants 
into AO determinants; and V is the matrix transform­
ing AO determinants into properly symmetrized VB 
spin eigenfunctions. Neither D nor V is unitary be­
cause of the nonorthogonality of VB functions. The 
construction of S - 1 and V is straightforward. The 
matrix D is the inverse of a matrix whose construction 
was described by Moffitt.10 The transformation from 
AO's 7T to MO's if/ is given in terms of a unitary matrix 
u and a diagonal matrix d (eq 2). We consider only the 

<p = du7r = yir (2) 

case for which the z component of spin is zero, so that 
there are as many electrons with spin +ft/2 as with 
—fill. Then, the indices 1, 2, and 3 are reserved for 
spin orbitals with fi/2 z spin and indices 4, 5, and 6 for 
spin orbitals with —h/2 spin. Then the matrix element 
of D connecting a determinant based on MO's au 

. . ., an with a determinant based on AO's ft, . . ., 
ft„, can be written as shown in eq 3. 

r ^a i a s . . .ct2n V^a i • • .an/ \**an + i . . . a 2 n / 
^ 0 1 0 2 . . . (S2n j J 

Qai . . . Cla2n 

(3) 

__ I ua\ ' ' • ^an I J " a n + i • • • ua2n \ 

U0n . . . W 0 2 n 

The symbol 

**a i . . . an 

(10) W. Moffitt, Proc. Roy. Soc. (London), A218, 486 (1953). 

Sn Su Siz Su 

0.34565 0.29346 0.07847 0.04525 

denotes the determinant formed from the minor of the 
u matrix from the elements indicated. The quantities 
daj are the ara} elements of the diagonal matrix d. 

The entire transformation was set up for machine 
computation. For a given state and molecular geom­
etry, the choice of functions to use for the fi set was 
reflected only in the set of atomic overlap integrals one 
put into the input deck. For reference, the overlaps 
are given in Table IV. 

Appendix 2. Estimation of the Distorted Ground-State 
Wave Function 

In the D3h configuration of benzene, the optimum 
mixture between the e " and e"* orbitals is found by 
first orthogonalizing the pair of mixed orbitals and then 
minimizing the energy of the mixed pair. For example 
in the D3h representation e" , the elg function, <p = 
Ci(iri + 7T2 — 7T4 — 7T5), becomes nonorthogonal to the 
function </>2 = C2(7ri + 7T2 — 27r3 + X4 + 7T5 — 27T6); 
their overlap integral Sn is proportional to the differ­
ence between the overlap integrals (7Ti 17T2) and (7r21 T3). 
The secular equation was set up in terms of fa and the 
function, [fa — (fa | fa)fa], Schmidt-orthogonalized to 
fa. The elements of the secular determinant are 

Hn 

H12' = Hn — SnHn 

HYL = H11 — 2SnHn + Sn2Hu 

where 

Hn = di^UuUijhij hi, = (7T; I 3C J 7 )̂ 

Hn = didauuUijhij 

H11 = di UijUijhij 

using the Einstein summation convention. Elements 
hit were taken as hu = 11.54 ev = the valence-state 
ionization potential,11 and hi} as resonance integrals 
obtained by numerical integration of a Goeppert-
Mayer-Sklar core potential for the different bond 
lengths involved.12 

(11) R. Pariser and R. G. Parr, J. Chem. Phys., 21, 767 (1953); R. S. 
Mulliken, ibid., 2, 782 (1934). 

(12) S. I. Choi, J. Jortner, S. A. Rice, and R. Silbey, ibid., 41, 3294 
(1964). 
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